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We consider the survivable network design problem - -  the problem of designing, at minimum cost, a 
network with edge-connectivity requirements. As special cases, this problem encompasses the Steiner 
tree problem, the traveling salesman problem and the k-edge-connected network design problem. We 
establish a property, referred to as the parsimonious property, of the linear programming (LP) relaxation 
of a classical formulation for the problem. The parsimonious property has numerous consequences. For 
example, we derive various structural properties of these LP relaxations, we present some algorithmic 
improvements and we perform tight worst-case analyses of two heuristics for the survivable network 
design problem. 
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1. Introduction 

In this paper,  we study from several perspectives the linear programming (LP) 

relaxations of  a class of  network design problems. This class includes a number  of  
classical combinatorial  optimization problems as special cases, including the Steiner 

tree problem, the traveling salesman and the k-edge-connected network design 

problem. The central problem we consider can be described as follows. Given a 

complete undirected network G = (V, E)  and a cost c o associated with each edge 

(i , j)  ~ E we want to select a set of  (possibly multiple) edges at minimum cost, so 
that the resulting network satisfies certain connectivity properties. In particular, if 
we associate to vertex i a connectivity type ri representing the importance of communi-  
cation from and to vertex i, we call a network survivable if it has at least r/j = min(ri, rj) 
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edge-disjoint paths between any pair of vertices i and j. In a survivable network, 
the loss or failure of any k edges still allows communication between vertices whose 

connectivity type is greater than k. An example of a survivable network is given in 
Figure 1. Gomory and Hu [14] show that the analysis problem of checking whether 

a given network is survivable can be solved by means of n maximum flow problems, 
where n = I V]. In this paper, we consider the problem of  designing a minimum cost 

survivable network. This problem is also known as the multiterminal synthesis 
problem [14, 11] or the generalized Steiner problem [37]. 

The survivable network design problem (SNDP) is of particular importance in the 

design of communication or transportation systems in which the lack of communi- 
cation or connectivity between parts of the network might be catastrophic. For 
example, this issue is particularly relevant in the design of communication systems 

using fiber optic links (see Monma et al. [29, 27] for a detailed description). 
The Steiner tree problem can be modeled as an SNDP by letting the connectivity 

types ri be 1 for a set S of terminals and 0 for optional vertices, also called Steiner 

vertices. Consequently, the minimum spanning tree (S = V) and the shortest path 

problems (IS1 = 2) are also special cases. When the requirements are uniform, say 
equal to k, the SNDP reduces to the problem of designing a minimum cost k-edge- 
connected network. As we'll see when presenting the parsimonious property, it is 

very natural to allow the addition of degree constraints to the problem formulation. 
This extended version captures the well celebrated traveling salesman problem (TSP). 

When all edges have a unit cost, the SNDP can be solved in polynomial time by 

an algorithm due to Sridhar and Chandrasekaran [ 3 4 ] - -  an adaptation of the classical 
Gomory and Hu's algorithm [14] producing a network with possibly half edges. 
For arbitrary costs, the SNDP, generalizing the Steiner tree problem, is NP-hard. 
Typically, such a negative result from complexity theory leads researchers to obtain 

approximate rather than optimal solutions. In fact, heuristic algorithms based on 
local search have been proposed by Steiglitz et al. [35] for the SNDP in its full 
generality, by Monma and Ko [27] for the k-edge-connected network design problem 

(ri = k for all i) and by Monma and Shallcross [29] for the case where ri ~ {1, 2} for 

Fig. 1. Survivable network: The connectivity types are indicated inside earth vertex. 
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all i. Moreover, a wide variety of heuristics have been proposed for the Steiner tree 

problem (for a survey, see Winter [37]) and for the TSP (see Lawler et al. [23]). 

The foundation of this paper is the derivation of a structural property, the 
parsimonious property, of the LP relaxation of a classical formulation of the SNDP. 
The variety of consequences makes the parsimonious property particularly 

important. 
First, it gives strong relations between different relaxations and different com- 

binatorial optimization problems which, in turn, have algorithmic consequences. 
For example, we prove the surprising result that Steiner vertices (i.e. vertices with 

r~ = 0) are unnecessary when solving the LP relaxation of the Steiner tree problem 
when the triangle inequality holds. This reduces the size of the problems to be 

solved. The simplest relation that we derive from the parsimonious property is the 
fact that the 1-tree relaxation with Lagrangean objective function for the TSP, also 
referred to as the Held-Karp  lower bound [15, 16], is also a lower bound on the 
cost of  the minimum cost 2-connected subgraph. Another corollary is the surprising 
result that the LP relaxations under consideration of the Steiner tree problem, the 

k-edge-connected network design problem and the TSP are essentially identical 
under the triangle inequality, the value of the first being exactly equal to the value 

of the second divided by k or half the value of the third. This can be used to compute 

the corresponding LP bounds efficiently. In a companion paper [12], a new formula- 
tion for the Held-Karp  lower bound, which follows from the parsimonious property, 
is used to perform a probabilistic analysis of the bound when the vertices are 
identically and independently distributed in some Euclidean space. 

The parsimonious property is also crucial in the analysis of two heuristics for the 

SNDP. Our first heuristic, referred to as the tree heuristic, is based on the computation 
of minimum spanning trees and reduces to previously known heuristics when applied 
to the Steiner tree problem. The second heuristic, called the improved tree heuristic, 
reduces to Christofides' heuristic when applied to the 2-connected network design 
problem. Among other results, our worst-case analysis shows that the ratio between 
the value of  either heuristic and the LP relaxation bound is always less than twice 
the number of distinct nonzero connectivity types and also less than twice the 
logarithm of the largest connectivity type. Moreover, these bounds are tight. For 
the Steiner tree problem, our analysis strengthens results due to Takahashi and 
Matsuyama [ 36 ], Kou et al. [ 21 ], Plesnik [ 30 ] and E1-Arbi [ 10 ]. Moreover, whenever 
ri c {0, 1, 2}, ri ~ {0, 1, 3} or r~ ~ {0, k} for all i, we show that the improved tree heuristic 
is within twice the value of the optimal network. This also generalizes the result on 
the Steiner tree problem. 

The remainder of the paper is structured as follows. In Section 2, we present and 
prove the parsimonious property. Consequences for the Held-Karp  lower bound 
are investigated in Section 3. In Section 4, we present several algorithmic implications 
of the parsimonious property. Section 5 contains the description of the tree heuristics 
for the SNDP and their worst-case analyses. Finally, we conclude with some possible 
extensions. 
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2. The parsimonious property 

Let G = (V, E)  be the complete undirected graph with vertex set V. For any pair 

(i , j)  of vertices, let r U be the connectivity requirement between i a n d j  (rij is assumed 
to be symmetric, i.e. r!j = r~i). Although we concentrate our attention on the typical 

case in which ro = min(ri, rj) for some set {r~} of connectivity types, we will state the 
parsimonious property in its full generality. By abuse of notation, r will denote 
either the set {ro} or, if applicable, the set {ri}. Call a network survivable if it has 
at least rij edge-disjoint paths between any pair (i , j)  of vertices. If some edge, say 
e, is selected in a network, we incur a fixed cost ce. In this paper, we assume that 

any edge may be chosen repeatedly. The survivable network design problem (SNDP) 
consists in finding the minimum cost survivable network. This problem may be 

formalized by the following integer program: 

(IPo(r)) IZo(r) = Min ~ CeXe 
e c E  

subject to ~ xe>~ max r!j, S c V ,  S~O,  (1) 
eeg~(S) ( i , j )cS(S)  

O<~xe, e~E ,  
x~ integral, e c E, 

where 8(S) represents the set of edges connecting S to V\S.  Indeed, constraints 
(1) insure that the value of a minimum cut separating i f romj  is at least rij, implying 

that there are at least r U edge-disjoint paths between i and j. We denote by (IP~(r)) 
the above integer program and by IZ~(r) its optimal value. Let (P~(r)) denote the 

LP relaxation of (IP~(r)) obtained by dropping the integrality restrictions and let 
Z~(r) be its optimal value. Clearly Z~(r) is a lower bound on IZ~(r). The meaning 

of the symbol ~ in this notation will become clear shortly. 
Although the linear program (P~(r)) has an exponential number of constraints, 

the value Z~(r) can be computed in polynomial time either using the ellipsoid 
algorithm since the separation problem over (P~(r)) can be solved by Gomory and 
Hu's algorithm [14] or using Karmarkar's algorithm since (Po(r)) can be reformu- 
lated compactly using flow variables. However, these computational approaches are 
not satisfactory in practice and in fact, so far, no efficient and practical algorithm 

to compute Z~(r) exists. 
As noticed in the introduction, the SNDP has some interesting special cases. For 

example, the Steiner tree problem - -  the problem of  connecting at minimum cost a 
subset S of  terminals possibly using some Steiner vertices in V~S ~ can be formu- 
lated as ( IPo( l s ) )  where (ls)ij= 1 if i deS  and 0 otherwise (or, (IS)i= 1 i f i e S a n d  
0 otherwise). The formulation ( IPo( l s ) )  is known as the set covering formulation 
[2 ]. When r~j= k for all ide Vwe obtain the minimum-cost  k-edge-conected network 

design problem. 
For any feasible solution x either to (IPo(r)) or to (P0(r)), the degree of vertex 

i, defined by dx(i) A ~e~(l~I~ Xe, is at least equal to maxj~ v\<~ rij because of constraints 



M.X. Goemans, D.J. Bertsimas / The parsimonious property 149 

(1) for S={i}.  If dx(i)= maxj~v\u~ r u then we say that x is parsimonious at vertex 

i. If  we impose that the solution x be parsimonious at all vertices of  a set D_c V 

we get some interesting variations of (IP~(r)) and (Po(r)), denoted by (IPD(r)) and 
(PD(r)), respectively. The most interesting special case is the traveling salesman 

problem. Indeed, when r,~=2 for all i j c  V, the feasible solutions to ( IP v (2 ) )  (2 de- 
notes the vector of  2's) correspond to Hamiltonian tours. The formulation of  

( IPD(r ) )  as an integer program is: 

( IPo( r ) )  IZD(r) = Min ~ cexe 
e~E 

subject to xe~  > max ru, S c V ,  S # 0 ,  
ec6(S)  ( i , j )~b(S) 

xe = max ru, i 6 D ,  
j~  V\{i} eE6({i}) 

O<~xe, e e E ,  

xe integral, e e E. 

When we have integrality restrictions, the problem is clearly altered by the introduc- 
tion of parsimonious constraints. For example, the TSP and the minimum-cost 

2-connected problem have the same edge connectivity requirements but with different 
parsimonious constraints. Another illustration is given by the Steiner tree problem 
and the minimum spanning tree problem on S. However, when the integrality 

restrictions are relaxed, the value of the LP relaxation is not affected by the 
introduction of parsimonious constraints when the costs satisfy the triangle 

inequality, i.e. when c u + Cjk >~ Cik for all i,j, k e V. This somewhat surprising result, 

which we refer to as the parsimonious property, constitutes the foundation of this 
paper. 

Theorem 1 (the parsimonious property). I f  the costs {ce} satisfy the triangle inequality 
then Zo(r ) = Zo(r )  for all subsets D c V. 

The proof  of this theorem is based on Lemma 2 which is a stronger version of a 
result due to Lov4sz [24] on connectivity properties of Eulerian multigraphs. The 
proof  of  this version, similar to the proof  given by Lov~isz, is given in Appendix 1. 
The use of Lov4sz' lemma in a similar context also appears in Monma et al. [29]. 

Lemma 2. Let G = (V, E)  be an Eulerian multigraph. Let cc( i,j) ( i ,j  c V) denote the 
maximum number of  edge-disjoint paths between i andj. Let x be any vertex of  G and 
let u be any neighbor of  x. Then there exists another neighbor of  x, say v, such that, 
by splitting (x, u) and (x, v) i.e., removing the edges (x, u) and (x, v) and adding 

the edge (u, v), we obtain a multigraph G' satisfying the following two conditions: 
1. cc,(i,j) = cc(i , j )  for all i, j 6  V\{x},  and 

2. cc,(x,j)  = min(cc(x , j ) ,  d G ( x ) -  2) for all j c V\{x},  where de(x)  represents the 
degree of  vertex x in G. 
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Condition 2, which does not appear in Lov~isz's result, states that the splitting 
operation can be performed while maintaining most connectivity requirements 
involving vertex x. 

Proof of Theorem 1. Clearly Z0(r ) ~< ZD(r) since (PD(r)) is more constrained than 
(P~j(r)). In order to prove that Z~(r) >~ ZD(r) we consider an optimal solution, say 

x, to (P0(r)). We shall construct a feasible solution y to (PD(r)) whose cost is at 
most equal to the cost of x. Since all data is rational, we may assume that all 
components of x are rational. Hence, there exists some integer k such that kx~ and 
krq are even integers for all e = ( i , j )  ~ E. Let G = ( V,/~) be the Eulerian multigraph 

which has kx~ copies of edge e. By the max-flow-rain-cut theorem, cd( i , j )  >~ kr~j for 

all ( i , j )  ~ E. As a result, by applying Lemma 2 repeatedly with x chosen among the 
vertices in D, we will eventually obtain a multigraph G' such that 

(i) cc,(i , j)  >- krij V( i , j )  c E, 

(ii) do,U)= max kr o V i e D .  
j~ v\(i} 

Therefore, if we let Ye (e ~ E)  be equal to the number of copies of edge e in G' 

divided by k, we obtain a feasible solution to (PD(r)). Moreover, since the costs 
satisfy the triangle inequality, each time we perform a splitting operation the cost 
of the solution does not increase which implies that ~ z  CeX~ > ~ Z  c,y~. Since D 
was arbitrary, this completes the proof  of Theorem 1. [] 

In general, when the costs do not satisfy the triangle inequality, the parsimonious 
property does not hold. Nevertheless, this is not a restriction for the survivable 
network design problem and its special cases, such as the Steiner tree problem or 
the k-edge-connected network design problem. Indeed, let us consider an instance 
of the SNDP with arbitrary costs {c~}. Define c'~ (e = ( i , j ) )  to be the length of the 

shortest path between i and j with respect to the lengths {ce}. Clearly, {c'~} satisfy 
the triangle inequality. Theorem 3 states that we can replace ce by c'e without affecting 

IZ0(r) or Zo( r ) .  

Theorem 3. For any set {ce} of costs, IZo(r ) = IZ~(r) and Zo(r) = Z'o(r), where IZ~(" ) 
and Z ! ( .  ) refer to the costs {c'¢}. 

Proof. Since c'e<~ Ce for all e ~ E, IZ~(r)~< IZ~(r) and Z'~(r)<~ Z0(r). Now, consider 
an optimal solution x* to (IPo(r)) (resp. to (P0(r))) with respect to the costs {C'e}. 
In order to construct an optimal solution with respect to the costs {Ce}, we perform 
the following transformation. If  some edge e = ( i , j )  with c'~ < c~ has some nonzero 
weight x*,  then we decrease x~* to 0 and increase by x* the weights on the edges 
of a shortest path from i to j. Notice that this maintains feasibility and optimality 
of the solution. By repeating this operation, we obtain an optimal solution £ to 
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(IP0(r)) (resp. to (P0(r))) with respect to the costs {c'e} such that ~e = 0 whenever 

C'e < C~. As a result, the cost of this solution remains unchanged if we replace C'e by 

Ce. This and the fact that IZ;( r )  ~< IZo(r) (resp. Z'o(r) <~ Zo(r))  imply that ~ is also 
optimal with respect to {ee}. This completes the proof  of Theorem 3. [] 

The above transformation gives a generic transformation to convert a survivable 

network of total cost C'  with respect to {C'e} into a survivable network of the same 
cost but with respect to {Ce}. 

In the rest of this paper, we consider implications of the parsimonious property. 

3. Structural properties of  the Held-Karp bound 

In this section, we consider the Held-Karp  lower bound [15, 16] for the traveling 
salesman problem. This bound has been successfully used by several researchers to 

solve instances of the TSP by branch and bound methods (see Balas and Toth [4]). 
Moreover, in a striking computational study, Johnson [17, 18] estimates the degree 

of suboptimality of heuristic solutions by computing the Held-Karp  lower bound 
and, as a result, he is able to show that the solutions he generates = are within 1% of 

optimality for instances with as many as 100 000 vertices. The Held-Karp  lower 

bound can be formulated in several equivalent ways, the most classical being in 
terms ofithe 1-tree relaxation with Lagrangean objective function [16]. As a linear 
program, it can be expressed by: 

(P1) ZHK = Min Y, CeXe 
e E E  

subject to y, xe~>2, S c V ,  S ¢ 0 ,  
e ~ 3 ( S )  

Xe=2,  i c V ,  
e~a({i}) 

0 <~ Xe, e ~ E. 

ZHK is thus precisely Z v ( 2  ). By the parsimonious property, we have that ZH~ = Z~ (2) 
under the triangle inequality, i.e. 

(P2) ZH K = min • CeXe 
e e E  

sUbject to Y~ Xe~>2, S c V ,  S # 0 ,  
, e ~ 6 ( S )  

O<~Xe, e~  E. 

This new formulation is very helpful in order to derive properties of the bound. 
For example, we have: 
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Theorem 4 (Cunningham [28]). Under the triangle inequality, the Held-Karp lower 
bound Zr~K is a lower bound on the value of the minimum-cost 2-connected netweork 
design problem. 

Proof. The theorem follows from the fact that by adding integrality constraints to 

(P2) we obtain an integer programming formulation of the 2-connected network 
design problem. [] 

By the same argument, the Held-Karp  lower bound is also a lower bound on the 
Steiner version of the minimum 2-connected network design problem in which 

optional vertices are allowed. 

In a companion paper [12], formulation (P2) is used to perform a probabilistic 

analysis of the bound when the vertices are identically and independently distributed 

in some Euclidean space. Under this probabilistic model, the Held-Karp  lower 
bound is proved to have a similar asymptotic behavior as the traveling salesman 
problem or the 2-connected network design problem. More specifically, the bound 

is almost surely and asymptotically a fraction of the optimal value, this fraction 
being empirically evaluated to be greater than 99% [17, 18]. This probabilistic 
analysis uses several structural properties of the bound, such as its subadditivity, 

monotonicity and upperlinearity. This last property seems hard to prove without 
referring to the new formulation (P2). In the next theorem, we show that the 
monotonicity of the Held-Karp  lower bound is an immediate corollary of the 
parsimonious property. 

Theorem 5. Let ZHK( S) be the Held-Karp lower bound for the subgraph Gs induced 
by the subset S of vertices. I f  {c~} satisfy the triangle inequality then ZHK( S) <~ ZHK( V) 
for all S c V. 

Proof. By definition, Z H K ( S  ) = Zv(2s), where (2s)0 = 2 if i, j c S and 0 otherwise. 
Moreover, by the parsimonious property, Zv(2s) is equal to Z0(2s). Since (P0(2s)) 
is a relaxation of  (Po(2v)), we have that Zo(2s)<~Z~(2v). Using again the par- 
simonious property, we obtain ZO(2v)=Zv(2v)=ZHK(V).  This proves that 

z ~ ( s )  <~ z .~(v ) .  [] 

The monotonicity of the bound is not only useful for its probabilistic analysis 
but also for its worst-case analysis. Shmoys and Williamson [33] use this monotonic- 
ity property to give another proof  of a result due to Wolsey [38] stating that the 
ratio between Christofides' heuristic and the Held-Karp  lower bound is bounded 
by 3 under the triangle inequality. In Section 5, a monotonicity property similar to 
Theorem 5 will be the basis of our worst-case analysis of the tree heuristic for the 

survivable network design problem. 
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4. Algorithmic implications 

153 

The parsimonious property also has algorithmic implications in order to compute 
LP relaxation bounds efficiently. Throughout this section, we assume without loss 
of generality (see Theorem 3), that the costs satisfy the triangle inequality. By the 
parsimonious property, any vertex with ri = 0 can be deleted when solving the linear 
program (Po(r)). This reduces the size of  the problems to be solved. An even more 
astonishing result relates the LP relaxations of the Steiner tree problem and the TSP. 

Theorem 6. Let Zsp(S) be the optimal value of the linear program (Po(ls)). Then 
Zsp(S)--½Z~K(S), where ZHK(S) is defined in Theorem 5. 

Proof. Using the parsimonious property and our concise notation, we have that 

Zsp(S)=Z~(ls) =Zv(ls). By linearity, this last quantity is equal to ½Zv(2s)= 
½z~(s). 

The relation expressed in Theorem 6 leads to an algorithm to compute Zsp(S). 
Indeed, Held and Karp [15, 16] show the equivalence between the relaxation Pv(2) 
and the 1-tree relaxation with Lagrangean objective function and show that ZHK(S) 
can be obtained by solving a sequence of minimum spanning tree problems. 

Moreover, their algorithm can be implemented efficiently to obtain very close 
approximations of Z~K(S) for instances with as many as 100 000 vertices [18]. The 
reader is referred to the original paper [16] or to [4] for a detailed presentation of  

Held-Karp 's  algorithm. 
Similarly, the LP relaxation bound for the k-edge-connected network design 

problem can be related to the Held-Karp  lower bound. In fact, under the triangle 

inequality, Zo(k)= ½kZHK. Therefore, Held and Karp's approach can also be used 
to obtain a lower bound on the cost of a k-edge-connected network. Moreover, 
given the experimental observation and some theoretical explanation that ZHK is 
very close to the cost of the optimal tour [17, 18, 4, 12], we can assert that Zo(k) is 
a very good lower bound in order to assess the quality of a k-edge-connected 
heuristic network. 

The subadditivity and the upperlinearity (for details see [ 12]) also have algorithmic 
consequences. These properties justify the use of partitioning schemes a la Karp 

[20] for obtaining LP relaxation bounds corresponding to Euclidean problems. For 
example, suppose we would like to compute the Held-Karp  lower bound defined 
by a set of  vertices in the unit square. If {Qi: i=  1 , . . . ,  m} is a partition of the unit 
Square into subregions of finite perimeter then the upperlinearity implies that 
~=~ ZHu(Vc~ Qi)-2(c-2)<~zuK(v) where c is the total length of  the boundary 
of the partition. As  a result, we can obtain a lower bound by solving m smaller 
subproblems. Moreover, using the subadditivity of the Held-Karp  lower bound we 
can construct a feasible solution to (P2) whose cost is at most Y~=I ZH~(Vc~ Qi)+ 
2x/2m. When the partition consists of m = k 2 similar subsquares, this partitioning 
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scheme gives an upper  bound and a lower bound on the He ld -Karp  lower bound 

which differ by at most (4 + , / 2 )k  units. Moreover, the ratio of  this difference to the 

H e l d - K a r p  lower bound is almost surely equal to 0 when the vertices are indepen- 

dently and identically distributed in the unit square and m = o(n). 

5, The tree heuristics and their worst-case analyses 

In this section, we consider the instances of the SNDP for which the requirements 

are of  the form r~j = min(ri, rj). As previously mentioned, this is the most typical 

case. We introduce two heuristics, the tree heuristic and the improved tree heuristic, 
and we show that they have some interesting worst-case guarantees. 

The tree heuristic consists in constructing a survivable network as a union of 

trees. More precisely, in the kth iteration, we construct a minimum cost tree spanning 

all vertices for which r~ ~> k. The resulting network is survivable since, at iteration 
k, we have at least 1 additional path from i to j if both ri and rj are greater or equal 

to k. The implementat ion of this heuristic can be made more efficient by noticing 

that several iterations might have the same vertex set. 

Tree heuristic. 
Step 1. Compute  the shortest path lengths {c'e}. 

Step 2. Prepare a sorted list L = {P0 = 0 < Pl < 02 < "  " < Dp} consisting of all dis- 
tinct connectivity types. 

Step3. x:=O. 

For k =  1 to p do: 

• Let Vk:={iE V: ri>~pk}. 
• Compute  Tk = (Vk, Ek), the minimum spanning tree with respect to {c'~} of 

the complete graph induced by Vk. 

• Let Xe:=Xe+(pk--pk_l) for all e e  Ek. 
Step 4. Use the transformation described in Theorem 3 to obtain a survivable 

network whose total cost with respect to {Ce} is equal to the cost of x with respect 

to {ere}. 
Step 5. Apply some local improvement  heuristic. 

Step 1 and 4 reduce the instance into one in which the costs satisfy the triangle 
inequality. The tree heuristic is a construction heuristic: it constructs piece by piece 
a survivable network. Step 5, which is optional, allows to combine the tree heuristic 

with an improvement  heuristic - -  a heuristic which starts f rom a feasible solution 
and iteratively performs some local transformation in order to obtain a solution 
with smaller total cost. Improvement  heuristics were proposed by Steiglitz et al. 
[35] for the general SNDP, by Monma and Ko [27] for the k-edge-connected 
network design problem (r~ = k for all i) and by Monma and Shallcross [29] for 
the case where r~ c {1, 2} for all i. I f  the original costs satisfy the triangle inequality, 
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the three heuristic can be implemented in O(pn 2) time where n represents the 
number of vertices. Otherwise, Step 1 is the bottleneck operation in the above 
description. However, although convenient for the analysis, Step 1 is not really 
needed. The minimum spanning tree heuristic for the Steiner tree problem can 
indeed be implemented in O(n 2) time even when the costs do not obey the triangle 
inequality (see Mehlhorn [26]). This results in an implementation of the tree heuristic 
running in O(pn 2) time. 

When applied to the Steiner tree problem, the heuristic reduces to the minimum 
spanning tree heuristic proposed in slightly different versions by Kou et al. [21], 
Plesnik [30], E1-Arbi [10], and Takahashi and Matsuyama [36] (see also [26]). The 
tree heuristic is also a generalization of the double spanning tree heuristic for the 
2-connected network design problem or the TSP. 

Before analyzing the tree heuristic in its full generality, we consider the worst-case 
analysis of the minimum spanning tree heuristic for the Steiner tree problem. Kou 
et al. [21], Plesnik [30], EI-Arbi [10], and Takahashi and Matsuyama [36] show 
that the ratio between the value of the minimum spanning tree heuristic and the 
optimal value of the Steiner tree problem is bounded by 2-2/IS[ ,  where S denotes 
the set of terminals. In fact, we can prove the following stronger result. 

Theorem 7. For any set {c~} of costs, Ztree(S)/Zsp(S)<~2-2/IS], where Ztree(S) 
denotes the value of  the tree heuristic when applied to a Steiner tree problem in which 
S is the set of  terminals and where Zse(S) is the LP relaxation bound Z~(ls). 
Furthermore, the bound is symmetrically tight in the sense that, for any set S, there 

exist instances for which IZo( l s ) /Zsp(S  ) = 2-2/151, and other instances for which 

Z..ee( S ) /  IZo( l s) = 2 - 2 / [ S  I. 

Proof. Using Theorem 3, its proof and the structure of the tree heuristic, we can 
restrict our attention to instances which satisfy the triangle inequality. In this case, 
the tree heuristic reduces to taking a minimum spanning tree over S. Let x* be the 
optimal solution to (Pv( ls ) ) .  By the parsimonious property, the value of x* is 
precisely Zsp(S). The value of the tree heuristic can be expressed as the optimal 
value of a linear program by using Edmonds' complete characterization [9] of the 
spanning tree polytope. 

(PMsT) Ztree(S) = Min Z CeXe 
e~E 

subject to E xo~<lrl-a,  r c s ,  r#O, 
eEE(T) 

Z Xe : ]SI-1, 
e~E(S) 

O<~Xe, ecE(S). 

It is easy to verify that (2 -2/]S])x* satisfies all the constraints of (PMsT). Therefore, 
( 2  - 2/ISl)Zsp(S ) = ( 2  - 2/ ]S[)Zv( ls)  >~ Z t r e e ( S  ) .  
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The heuristic attains the worst-case bound when there is one Steiner vertex linked 

to all other vertices by edges of cost 1, while all other edges have cost 2 (see Figure 

2). The heuristic solution has value 2(1S I -  1) while the optimal Steiner tree has 

value [S[. 

In order to show that the cost of  the opt imum Steiner tree can be (2 -2 / IS [ )  times 

the value of its LP relaxation value, consider the minimum spanning tree problem 

on S with ce = 2 for all e c E (see Figure 3). Clearly, the optimal Steiner tree has 
value 2([S[-1) ,  while the opt imum solution of the LP relaxation is obtained by 

setting Xe = 0.5 along some Hamiltonian cycle, resulting in a total cost of  IS I. [] 

We can use Theorem 7 to perform a worst-case analysis of the tree heuristic for 

the general survivable network design problem. 

Theorem 8. For any set {ce} of  costs, 

Z t r e e ( r  ) 2 Zf/)(r) ~(2-~ll)(k~1 pk-Dk-l't'Dk /i 
where Zt~ee(r) denotes the value of  the tree heuristic when the connectivity types are 

given by the vector r, and Pe and V t are defined in Steps 2 and 3 of  the tree heuristic. 

0 0 0 

(a) Problem instance (b) Optimal Steiner tree (c) Heuristic solution 

O Steiner vertex 

O edge of cost 1 

O O edge of cost 2 

Fig. 2. Worst-case instance. 

O C ~ . . . . .  Q 

d b 
i r 

..... d 

(a) Problem instance 

O O edge of cost 2 

(b) Optimal Steiner tree (c) LP optimal solution 

(3" . . . . .  © weight of 0.5 

Fig. 3. Worst-case instance. 
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Proof. As in Theorem 7, we assume without loss of  generality that the costs satisfy 

the triangle inequality. Therefore, Zt~ee(r) can be expressed by 

P 
Zt ree ( r )  = ~ (pk--Pk_l)ZMsT(Vk) (2)  

k--1 

where ZMsT(Vk) denotes the cost of  the minimum spanning tree over Vk. From 

Theorem 7, we know that 

2 2 

But, 

1 
z ~ (  v~) = & ( l v ~ )  = - -  Z~(p~lv~). (3) 

Pk 

Combining (2) and (3), we obtain 

+) Ztree(r) ~ L Pk --Pk--, Zo(pklv~). (4) 
k=l Pk 

Since, by definition of Vk, the requirements in pklvk are less or equal to the 

requirements in r, Zo(pk 1 vk ) <~ Zo( r). Therefore, 

Ztree(r) ~< L Pk--Pk l Z~(r  ) 
k= 1 Pk 

which proves the theorem. [] 

We now consider the question whether the bound in Theorem 8 is tight. For a 

given set L = {Po = 0, Pl,  p2, - .  •, pp} of distinct connectivity types, let 

Z,,ee(r) 
f ( L )  = sup 

, . . . .  L , , . ~ v  Z . ( r )  

where the supremum is taken over all instances whose connectivity types are within 

L. Notice that f({0, Pl, p 2 , . . . ,  pp}) = f ( { p l ,  p 2 , . . . ,  pp}) since vertices whose con- 

nectivity type is 0 affect neither the heuristic nor the LP relaxation. Theorem 8 

implies that 

f({Po = O, Pl ,  P 2 , . . . ,  Pp}) <~ 2 L Pk -- Pk-1 
k = 1 Pk  

In the next theorem, we show that this bound can be achieved in some cases. 

Theorem 9. I f  p2/pl,p3/P2 .... ,Pp- l /Pp-  2 and  2pp/pp_ l are integers then 

f ( { p o = O , p , , P 2 , . . . , p p } )  = 2  L Pk--Pk 
k =  ] P k  
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The proof  of this result is lengthy and technical, and is sketched in Appendix 2. 

From Theorem 9 we can derive the following result. 

Corollary 10. 1. f (0 ,  2 °, 2~ , . . . ,  2 p-I)  = p -F 1 f o r  any  p >~ 1, 

2. f (0 ,  1, 2 , . . . ,  rmax) - - =  O(log rmax), 
3. sups~f(0, Pl ,  . . . , Pp) = O(p) ,  where 5~p denotes  the set  o f  ins tances  with at mos t  

p dist inct  connect iv i ty  types. 

Proof. 1 follows directly from Theorem 9. 

By Theorem 8, 

P 1 
f(0,  1, 2 , . . . ,  r . . . .  ) ~ 2 k~l k = O(log rmax). 

Moreover, by definition o f f ( .  ), f ( L ) > ~ . [ ( L ' )  whenever L~_ L'. Therefore, by 1, 

f (0 ,  1, 2 . . . .  , r . . . .  ) ~>f(0, 2 °, 2 1 , . . . ,  2 [l°g2 rm~'~] ) 

= [log2 r .... ] +2  =/2( log rmax). 

Combining (5) and (6), we get 2. 

By Theorem 8, 

f ( O , P ~ , . . . , P p )  <~2 ~ P k - - P k - ~ < 2 p .  
k=l Pk 

Moreover, using 1, 

sup f(0,  p ~ , . . . ,  pp) >~f(0,20 , 2~ , . . . ,  2 p-~) = p +  1. 
5~p 

This proves 3. [] 

(5) 

(6) 

In the next theorem, we compare the value of the tree heuristic to the optimal 
value rather than the LP relaxation bound. We show that when some vertex has a 
connectivity type of 1, we can lower the constant of Theorem 8 by one unit. Although 
LP relaxations do not appear in the statement of Theorem 11, they play a privileged 

role in its proof. 

Theorem 11. I f  pl = 1 then 

0 
where V1 = { i ~ V: ri >~ 1}. 

Proof. Consider the optimal solution x* to (IPo(r)). This optimal network consists 
of a maximal 2-connected block to which trees are attached (see Figure 4). Moreover, 
this block spans a set B of vertices containing V2 (the set of vertices whose 
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Fig. 4. Example in proof of Theorem 11. 

connectivity types is at least P2). We decompose x* into the sum of two vectors y 
and z where 

{~xe {½x* if e ~ E ( B ) ,  
! • if e c E(B), and Ze = IX* otherwise. Ye = _ otherwise, 

Clearly, x* = y + z. The crucial observation is that, by definition of B, 2y is a feasible 
solution to (Po(p21v2)) while z is a feasible solution to (P~(lv,)). Hence, 

IZ~(r)= E cex*= E ceye+ • cez~>~½Zo(p21v2)+Z~(lv~). (7) 
e e E  e e E  e e E  

Combining inequality (4) from the proof of Theorem 8, in equality (7) and the fact 
that Z~(pklv~) <~ IZ~(r), we obtain 

2 Z~(pkl%) ) 

<~ ( 2 - [  V ~ ) ( I Z ~ ( r ) +  (P~2 ' ~)Z~(p2lv2) 

k =3 Pk / 

<~(2--~)(~+k~=2Pk--Pk-']IZ~(r)Pk / 

where we have used the fac t tha t  (p2-1)/p2-½~O since p2~>2. [] 
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As a corollary, we obtain that the tree heuristic is within twice the value of the 
optimal solution not only for the Steiner tree problem but also for the case in which 
r~ ~ {0, 1, 2} for all i ~ V. 

Corollary 12. I f  ri c {0, 1, 2} for all i ~ v then 

Ztree(r)/IZo(r ) ~ 2 - 2/1V,I. [] 

Our second heuristic, the improved tree heuristic, improves upon the tree heuristic 

in the worst-case when there is some gap in the sequence {Po = 0 < pl < P2 <"  " " < Pp}. 
The improved tree heuristic generalizes Christofides' heuristic [6] for the traveling 

salesman problem in the same way as the tree heuristic generalizes the minimum 

spanning tree heuristic for the Steiner tree problem [10, 21, 30, 36]. The improved 

tree heuristic can be described as follows: 

I m p r o v e d  tree  heur is t ic .  

Step 1. Compute  the shortest path lengths {c'~}. 

Step 2. Prepare a sorted list L--  {Po = 0 < p~ < P2 <"  • "<  pp} consisting of all dis- 

tinct connectivity types. 

Step 3. x :=0 .  

F o r k = l  t o p  do: 

• Let Vk:={i~ V: ri>~pk}. 
• Compute  Tk = (Vk, Ek), the minimum spanning tree with respect to {c'~} of  

the complete graph induced by Vk. 

• I f p k = P k -  1 + 1 then xe := xe + I for all e c Ek. 

Else 

- Let Ok be the vertices of  odd degree in Tk. 
- Compute  Mg = (Ok, E~), the minimum weight matching with respect to 

{e'~} of the complete graph induced by Ok- 

- Let xe := xe + [½(Ok -- Pk-l) ] for all e e Ek. 

- Let xe:=Xe + L½(Pk--Pk-l)J for all eeE'k .  
Step 4. Use the transformation described in Theorem 3 to obtain a survivable 

network whose total cost with respect to {e~} is equal to the cost of  x with respect 

to {c'~. 
Step 5. Apply some local improvement  heuristic. 

In other words, whenever we would like to increase the edge-connectivity between 

vertices in Vk by 2 units, we add to the current solution a minimum spanning tree 
Tk as well as a minimum weight matching Mk on the odd degree vertices of  Tk. 
Since the union of Tk and Mk is Eulerian and, hence, 2-edge connected, the resulting 
network has at least 2 more edge-disjoint paths between any pair of  vertices in Vk. 
I f  there are no gaps in the sequence L, the improved tree heuristic reduces to the 
tree heuristic. Otherwise, its overall time complexity is O(rn 3) where r denotes the 
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number of gaps in L. In the next theorem, we present a worst-case analysis of the 
improved tree heuristic. 

Theorem 13. For any set {ce} of costs, 

Zimp(r) P f (Pk--Pk- , )  

Z~(r) k = ,  pk 

where Zimp(r ) denotes the value of  the improved tree heuristic when the connectivity 

types are given by the vector r and f ( l ) = ) l  if  l is even and f ( l )=½(3/+ 1) if  l is odd. 

Proof. The value Z~p(r) of the tree heuristic is given by 

where ZM(Ok) represents the cost of the minimum cost matching on Ok. From 
Theorem 8 (see equation (3)), we know that 

z ~ ( v ~ )  < 2__ zo(m 1 v~), (lO) 
Pk 

the strict inequality arising from the fact that we have replaced 2--2/[Vkl by 2. 
Moreover, 

ZM(Ok) <~ Zok( lo~) = Zo(lok) <~ Zo(I v~) = 1  Zo(pklv~), (11) 
Pk 

where the first inequality follows from the complete description of the perfect 
matching polytope due to Edmonds [8] and the first equality follows from the 
parsimonious property. Combining equations (9), (10) and (11) and the fact that 

Zo(pklvk) <~ Zo(r) we obtain 

[ ]  /..., 
eo(r) k=~ Pk k=~ Pk 

For the Steiner k-edge-connected network design problem, we obtain: 

Corollary 14. / f  ri c {0, k} for all i c V and some k then 

Zimv(r) < {3 

IZo(r) 3+ 1/(2k) 
for k even, 

for k odd. 
[] 

Using the same technique as in Theorem 11, we can improve the constant in 
Theorem 13 when Pl = 1. 
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Theorem 15. If pl =1 then 

__<Zimp(r) ( ~ ,  f(Pk ~_Pk-l) 1).  
IZo(r) \k=l Ok 

Proof. The proof is identical to the proof of Theorem 11 except that equation (8) 
becomes 

Zimp(r ) ( ~ f ( P k - - P k - I )  Zo(pklvk ) 
k=l Pk 

= (2Z0(lv,)+ ~ f(Pk--Pk-1) Zo(p k 1vk)) 
k:2 Pk 

\ /92 k =3 Ok 

\k=l  Pk 

where we have used the fact that f (P2-1) /p2-1  ~> 0 since p2 ~> 2. [] 

Corollary 16. If  ri~{O, 1,3}for all i~ V then Zimp(r)/IZo(r)<2. [] 

This corollary also generalizes the result on the worst-case analysis of the Steiner 

tree problem. 

6. Concluding remarks and extensions 

We conclude by mentioning some generalizations of the parsimonious property. 
The property still holds if we have additional degree constraints of the form 
~e~C~i)~ Xe = ai for all i in some subset T of vertices. In that case, D has to be a 
subset of V\T. This generalization allows one to consider other combinatorial 
optimization problems such as the k-TSP. Moreover, the parsimonious property 
remains valid if we impose the cutset constraints (1) only for those subsets S of 
odd cardinality. Again, the class of problems that fit into this framework becomes 
richer and it now encompasses matching-type problems. It would be interesting to 
investigate whether the parsimonious property has important consequences for this 
broader class of problems. 

Very recently, Agrawal, Klein and Ravi [1] (see also Goemans and Williamson 
[13]) generalized the results of Section 5 to instances for which rij is not necessarily 
equal to min(r~, rj). Their approach is based upon a heuristic algorithm for the case 
where r o c {0, 1} and upon the techniques developed in Section 5. 
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Finally, we would also like to mention that Theorem 7 was recently used by 

Bienstock, Goemans,  Simchi-Levi and Williamson [5] to propose a constant guaran- 

teed heuristic for the prize collecting traveling salesman problem without a reward 

constraint (see also Goemans  and Williamson [13] for an improved heuristic). 

Appendix 1: Proof of  Lemma 2 

As previously mentioned, Lovfisz proves a slightly weaker version of Lemma 2 in 

which condition 2 is not present. His elegant p roof  proceeds along the following lines. 

1. There exists at most one set S satisfying: 

(a) x c S ,  u~S,  
(b) [~(S)t=cG(i,j) for some i, j c  V with icS ,  j ~ S  and i # x ,  and 

(c) S is minimal with respect to the above two conditions. 

2. I f  there is no such S, then any neighbor v of  x can be used for the splitting 
operation. 

3. I f  such an S exists then there exists at least one neighbor of  x in S. Moreover, 

any neighbor of x in S can be used for the splitting operation. 

Our p roof  of  Lemma 2 directly rests upon Lovfisz's proof. 

I f  dG(X) = 2 then the result follows directly from Lov4sz's result. Hence, assume 

that dG(X)>~4. Let G = (1~,/~) be obtained from G by adding a new vertex 2 and 

by linking that vertex to x through dG (x) -- 2 edges. Clearly, G is Eulerian. Moreover, 

cd(i , j )=cc(i , j )  Vi, j ~  V\{x}, 

cd(2, j )  = min(cG(x,j), da(x) - 2) Vj c V\{x}. 

Using the first step of Lovfisz's proof,  we obtain that there exists at most one set 

S c V u {2} satisfying 

(a) x c S ,  u~S,  
(b) I6(S)I = ce(i,j) for some i,j ~ V u  {2} with i ~ S , j~  S and i # x, 
(c) S is minimal with respect to the above two conditions. 

I f  such a set S exists we see that 2 ~ S. Indeed, if 2¢! S then [6(S)[/> dG(X) since 

both u and 2~  S, and d is Eulerian. Moreover,  16(S)t would be equal to cd(i, 2) 
for some i c S\{x}. This follows by (b) and the fact that 16(S u {2})[ < [6(S)1 which 

implies that there is no i a n d j  in V\{x} with i c S a n d j  ~ S such that [6(S)I = cd(i,j). 
This leads to a contradiction since dG(X) <~ J6(S)[ = cd(i, 2) <~ dd(2 )  < dG(x). 

MOreover, if a set S satisfying (a)-(c) exists then there must exist some v e S with 
v # 2 such that v is a neighbor of x. Indeed, if S does not contain any neighbor of  
x other than 2 then I6(S)] t> de(x) which certainly dominates c4(2,j) .  Hence, there 
would exist some i ~ S, x # i # 2 and j ~  S such that 6(S)= cd(i,j). This leads to a 

contradiction since S\{x, 2} would separate i f rom j and 16(S'\{x, 2}) I < ]6(S)[. As 

a consequence, using the last part of  Lovgsz's proof  we see that there exists some 
v # 2 such that by splitting off (x, u) and (x, v) we obtain a graph (~ with cd(i,j) = 
cd(i,j) Vi, j ~ V ~  {2}\{x}. By removing 2, we get a graph G' which could have been 
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obtained from G by splitting off (x, u) and (x, v). G '  satisfies cc,(i,j) = cd(i,j) = 
cd(i,j) = cc(i , j )  for all i, j c  V\{x} and 

Co,(X, j )  = cd (x, j )  t> cd (2, j )  = cd ()~, j )  = min(cG (x, j ) ,  dG (X) -- 2) 

for all j ~ V\{x}. Moreover, due to the splitting operation, cG,(x,j)<~ Co(x,j) and 

eG,(x,j) <~ d o ( x ) - 2 .  This completes the proof  of  Lemma 2. [] 

Appendix 2: Proof of Theorem 9 

Using Theorem 8, we need to construct a family of instances for which the ratio 

Z~ree(r)/Zo(r) is arbitrarily close to 2 ( ~ 1  (Pk--Pk-l)/Pk). 
Let c~k = Pk+~/Pk for k = 1 , . . . ,  p - 1. The following procedure constructs an inst- 

ance whose connectivity types are in {p~, . . . ,  pp}. 

Step 1. Take a 2ap_l-connected 2ap_l-regular graph G p with np vertices and 

npap_l edges. The existence of such a graph can be shown by induction. Assign 

each vertex of G p a connectivity type of pf,. 

Step 2. Replace each edge of G p by a path with np 1 internal vertices. Each 

internal vertex is assigned a connectivity type of Pe-l.  Denote the resulting graph 

by G p-l. 
Step 3. For i -=p -2  down to 1 do: 

• Replace all edges of  G i+l by ai parallel paths, each containing ni internal 

vertices of connectivity type p~. Denote the resulting graph by G ~. 

Step4. Let ce (e = (i , j))  be the number  of  edges in the shortest path in G 1 from 

i to j. 

The cost of the heuristic solution for this instance can be shown to be equal to 

/ t r e e ( r )  = k~ 1 [(Dk--Pk-1)(i~=, "i) (i~iOli) ]-~-O(i~ 1 Hi) 

k= 1 Pk 

A feasible solution to the LP relaxation can be obtained by assigning a weight xe 

of  1 ~p~ to every edge of G! and a zero weight otherwise. By computing the cost of  

this solution, we obtain 
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Therefore, as n ~ , . . . ,  np-> co, we have 

Ztree(r____~)_..> 2 ~ P k - - P k - ,  
& ( ' )  ~=, pk 

which combined with Theorem 8 completes the proof  of  Theorem 9. [] 
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